

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0774 of 13 November 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete

Bonded anchor for use in concrete

Sormat Oy Harjutie 5 21290 RUSKO FINNLAND

SORMAT OY, Plant 8

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/0774 English translation prepared by DIBt

Page 2 of 20 | 13 November 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 13 November 2015

Specific Part

1 Technical description of the product

The "Sormat Injection system ITH-Ve, ITH-Wi for concrete" is a bonded anchor consisting of a cartridge with injection mortar ITH-Ve or ITH-Wi and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment

ETA-13/0774

Page 4 of 20 | 13 November 2015

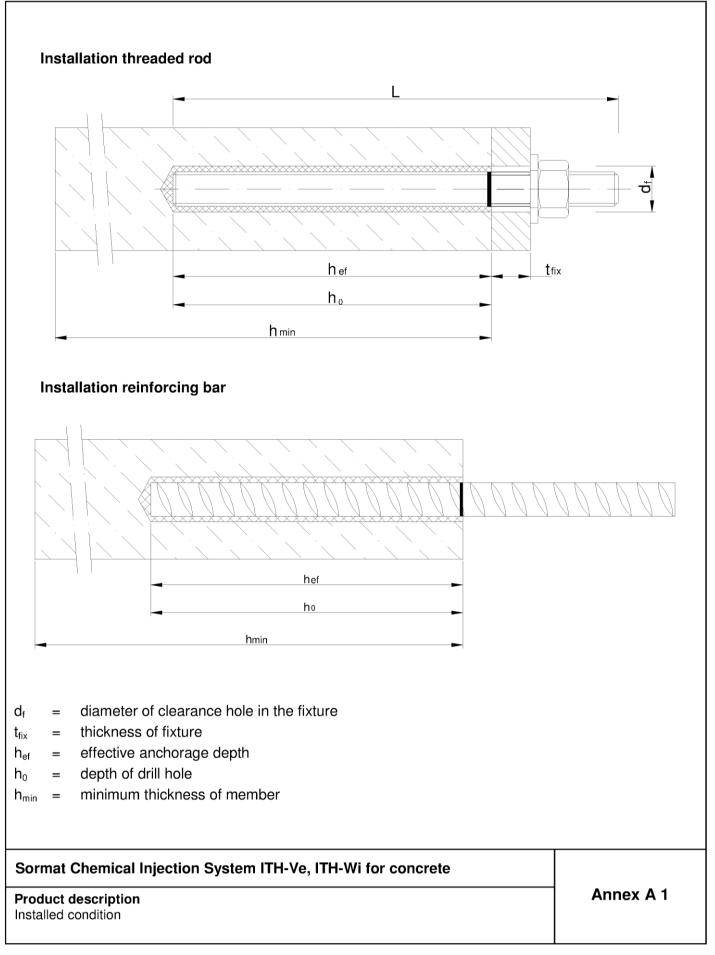
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

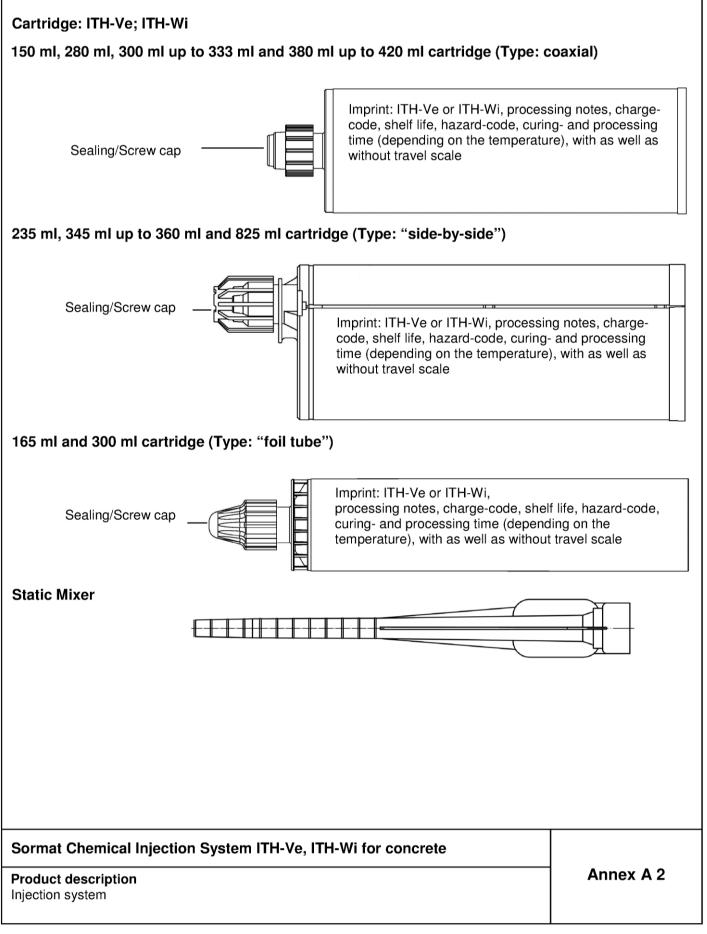
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2015 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* G. Lange

Page 5 of European Technical Assessment ETA-13/0774 of 13 November 2015

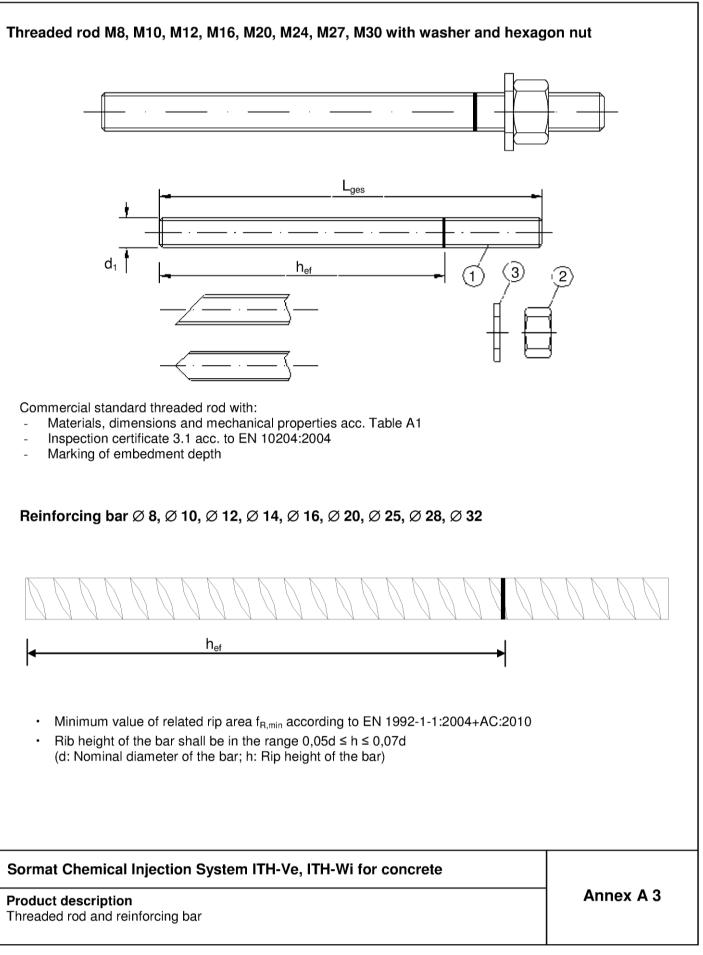


Table A1: Materials

Part	Designation	Material					
	zinc plated ≥ 5 μm acc. to EN ISO 4042:19						
	, bot-dip galvanised \ge 40 μ m acc. to EN ISO 4042.19		2:2009				
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 1993 $A_5 > 8\%$ fracture elongation					
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	EN ISO 898-2:2012, SO 898-2:2012,				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stain	less steel						
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506-1 \leq M24: Property class 70 EN ISO 3506-1 A ₅ > 8% fracture elongation Material 1.4401 / 1.4404 / 1.4571 EN 100	:2009 :2009				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	0088-1:2005				
High	corrosion resistance steel						
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506-1 \leq M24: Property class 70 EN ISO 3506-1 A ₅ > 8% fracture elongation	:2009				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:200 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	d) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005				
Reinf	orcing bars						
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013				
	1						
Sori	mat Chemical Injection System ITH-Ve	, ITH-Wi for concrete					
Prod Mate	luct description		Annex A 4				

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete

Intended Use

Specifications

Annex B 1

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharges depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >				()		-	
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				$h_{ef} + 2d_0$		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
d ₀ [mm] =	12	14	16	18	20	24	32	35	40
h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀)		
s _{min} [mm]	40	50	60	70	80	100	125	140	160
c _{min} [mm]	40	50	60	70	80	100	125	140	160
	h _{ef,min} [mm] = h _{ef,max} [mm] = d _b [mm] ≥ h _{min} [mm] s _{min} [mm]	$\begin{array}{c} d_{0} \ [mm] = & 12 \\ h_{ef,min} \ [mm] = & 60 \\ h_{ef,max} \ [mm] = & 160 \\ d_{b} \ [mm] \geq & 14 \\ h_{min} \ [mm] & \begin{array}{c} h_{ef} + 3 \\ \geq & 100 \\ \end{array}$	$\begin{array}{c c} d_{0} \ [mm] = & 12 & 14 \\ \hline h_{ef,min} \ [mm] = & 60 & 60 \\ \hline h_{ef,max} \ [mm] = & 160 & 200 \\ \hline d_{b} \ [mm] \geq & 14 & 16 \\ \hline h_{min} \ [mm] & \begin{array}{c} h_{ef} + 30 \ mm \\ \geq & 100 \ mm \\ \end{array} \end{array}$	$\begin{array}{c cccc} d_0 \ [mm] = & 12 & 14 & 16 \\ \hline h_{ef,min} \ [mm] = & 60 & 60 & 70 \\ \hline h_{ef,max} \ [mm] = & 160 & 200 & 240 \\ \hline d_b \ [mm] \ge & 14 & 16 & 18 \\ \hline h_{min} \ [mm] & \frac{h_{ef} + 30 \ mm}{\ge 100 \ mm} \\ \hline s_{min} \ [mm] & 40 & 50 & 60 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete

Intended Use

Installation parameters

Annex B 2

Steel brush

Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d_{b} Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm – uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete
Intended Use

Cleaning and setting tools

Annex B 3

Installation inst	ructions	
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed	d before cleaning.
4x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini the bore hole ground is not reached an extension shall be used.	mum of four times. If
or	The hand-pump can only be used for anchor sizes in uncracked bore hole diameter 20mm or embedment depth up to 240mm.	d concrete up to
4x)	Compressed air (min. 6 bar) can be used for all sizes in cracked concrete.	and uncracked
<u>********</u> **	 2b. Check brush diameter (Table B3) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B3). 	ed wire brush
or	2. Finally blow the hole clean again with compressed air (min. pump (Annex B 3) a minimum of four times. If the bore hole gro an extension shall be used. The hand-pump can only be used f uncracked concrete up to bore hole diameter 20mm or embedm 240mm. Compressed air (min. 6 bar) can be used for all sizes in uncracked concrete.	und is not reached or anchor sizes in nent depth up to
4x)	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again.	hole. If necessary, the mortar.
	3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended we (Table B4 or B5) as well as for new cartridges, a new static-mix	orking time
her	4. Prior to inserting the anchor rod into the filled bore hole, the pos embedment depth shall be marked on the anchor rods.	ition of the
min. 3 fuli stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive component shows a consistent grey colour. For foil tube cartridges is must b minimum of six full strokes.	nts until the mortar
Sormat Chemical	Injection System ITH-Ve, ITH-Wi for concrete	
Intended Use		Annex B 4

Installation instructions

	6. Starting from the bottom or back of the cleaned anchor hole fill t	
	approximately two-thirds with adhesive. Slowly withdraw the sta the hole fills to avoid creating air pockets. For embedment large extension nozzle shall be used. For overhead and horizontal ins plug (Annex B 3) and extension nozzle shall be used. Observe times given in Table B4 or B5.	r than 190 mm an stallation a piston
	 Push the threaded rod or reinforcing bar into the anchor hole when the ensure positive distribution of the adhesive until the embedmen 	
	The anchor should be free of dirt, grease, oil or other foreign ma	aterial.
	8. Be sure that the anchor is fully seated at the bottom of the hole mortar is visible at the top of the hole. If these requirements are application has to be renewed. For overhead application the ar fixed (e.g. wedges).	e not maintained, the
+20°C	9. Allow the adhesive to cure to the specified time prior to applyin Do not move or load the anchor until it is fully cured (attend Tal	
	 After full curing, the add-on part can be installed with the max. (Table B2) by using a calibrated torque wrench. 	torque
Sormat Chamica	Injection System ITH Vo. 1TH Wi for concrete	
Sormat Chemica	I Injection System ITH-Ve, ITH-Wi for concrete	Annex B 5

+ 20 °C to + 30 °C to	-4°C -1°C +4°C +9°C +19°C +29°C +34°C	90 min ²⁾ 90 min 45 min 25 min	24 h ²⁾ 14 h
$0 \circ C to$ $+5 \circ C to$ $+10 \circ C to$ $+20 \circ C to$ $+30 \circ C to$	+4°C +9°C +19°C +29°C	45 min	14 h
+5 °C to + 10 °C to + 20 °C to + 30 °C to	+9°C +19°C +29°C		
+ 10 °C to + 20 °C to + 30 °C to	+19°C +29°C	25 min	7 h
+ 20 °C to + 30 °C to	+29°C		2 h
+ 30 °C to		15 min	80 min
	+34°C	6 min	45 min
+ 35 °C to		4 min	25 min
	+39°C	2 min	20 min
> + 40 °C	С	1,5 min	15 min
Cartridge tempe	perature	+5°C to	+40°C
ITI	laximum Work ſH-Wi	ing time and minimum curing	time
ITH Concrete tempe	ſH-Wi	ing time and minimum curing Gelling- / working time	time Minimum curing time in dry concrete ¹⁾
	ſH-Wi		Minimum curing time
Concrete tempe	FH-Wi perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
Concrete tempe -20 °C to	CH-Wi Derature -16°C	Gelling- / working time 75 min	Minimum curing time in dry concrete ¹⁾ 24 h
Concrete tempe -20 °C to -15 °C to	Derature -16°C -11°C	Gelling- / working time 75 min 55 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h
Concrete tempe -20 °C to -15 °C to -10 °C to	CH-Wi Derature -16°C -11°C -4°C	Gelling- / working time 75 min 55 min 35 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h
Concrete tempe -20 °C to -15 °C to -10 °C to -5 °C to	Derature -16°C -11°C -4°C -1°C	Gelling- / working time 75 min 55 min 35 min 20 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h 5 h
Concrete tempe -20 °C to -15 °C to -10 °C to -5 °C to 0 °C to	Derature -16°C -11°C -4°C -1°C +4°C	Gelling- / working time 75 min 55 min 35 min 20 min 10 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h 5 h 2,5 h

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	N _{Rk,s} =N _{Rk,s,seis}	[kN]				$A_{s} \boldsymbol{\cdot} f_{uk}$				
Combined pull-out and	l concrete failure		•								
Characteristic bond resis	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
Characteristic bond resis	stance in cracked concre	te C20/25		_			-	_	_	_	
	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]			5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,seis}}$	[N/mm ²]	not admissible		3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]			5,5	5,5	not admissib		nissible	
		$ au_{Rk,seis}$	[N/mm ²]			3,7	3,7		not adr	nissible	
Temperature range II: 80°C/50°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]				4,0	4,0	4,0	4,5	4,5
	dry and wet concrete	$ au_{Rk,seis}$	[N/mm ²]	not admissible		2,7	2,7	2,7	2,8	3,1	3,1
	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]			4,0	4,0		not admissible		
		$ au_{Rk,seis}$	[N/mm ²]			2,7	2,7		not adr	not admissible	
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	not admissible		3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:		$ au_{Rk,seis}$	[N/mm ²]			2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]			3,0	3,0		not admissible		
		$ au_{Rk,seis}$	[N/mm ²]			2,0	2,0		not adr	nissible	
		C25/30	-				,	02			
Increasing factors for co	noroto	C30/3					,	04			
(only static or quasi-stati		C35/4	-	1,07							
ψ_{c}		C40/50	-				,	08			
		C45/5					,	09			
Factor according to	Non-cracked concrete	C50/60						10			
CEN/TS 1992-4-5	Cracked concrete	k ₈	[-]					0,1			
Section 6.2.2.3 Concrete cone failure	Cracked concrete						1	,2			
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]					0,1			
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					,2			
Edge distance		C _{cr,N}	[mm]					i h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Installation safety factor	(dry and wet concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1,2			
Installation safety factor	(flooded bore hole)	$\gamma_2 = \gamma_{inst}$			1,	,4			not adr	nissible	

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads

Annex C 1

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]				0,50 ·	$A_{s} \cdot f_{uk}$			
Characteristic shear resistance	V _{Rk,s,seis}	[kN]	not adn	nissible			0,35 ·	A _s ∙ f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0	,8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]				1.2 • V	V _{el} ∙ f _{uk}			
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]			No Perfo	ormance I	Determine	d (NPD)		
Concrete pry-out failure	ŀ									
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎					2	,0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1	,0			
Concrete edge failure	I									
Effective length of anchor	lf	[mm]				l _t = min(h	ı _{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1	,0			

Anchor size reinforcin	ig bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension re	esistance	N _{Rk,s} = N _{Rk,s,seis}	[kN]					$A_{s} \boldsymbol{\cdot} f_{uk}$				
Combined pull-out and	d concrete failure											
Characteristic bond resi	istance in non-cracked co	ncrete C20)/25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
Characteristic bond resi	istance in cracked concre	te C20/25										
	dry and wat accord	$\tau_{\rm Rk,cr}$	[N/mm ²]			5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,seis}$	[N/mm ²]	not admissible		3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	not adr	nissible	5,5	5,5	5,5		not adr	nissible	
	flooded bore hole	$\tau_{\rm Rk,seis}$	[N/mm ²]	1		3,7	3,7	3,7		not adr	nissible	
		$\tau_{\rm Rk,cr}$	[N/mm ²]			4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	not admissible		2,7	2,7	2,7	2,7	2,8	3,1	3,1
		τ _{Rk,cr}	[N/mm ²]			4,0	4,0	4,0	-	not adr	nissible	
	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1		2,7	2,7	2,7		not adr	nissible	
		τ _{Rk,cr}	[N/mm ²]			3.0	3,0	3.0	3.0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	not admissible	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C		τ _{Rk,cr}	[N/mm ²]		3,0	3,0	3,0	_,-		nissible	_, :	
	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1		2,0	2,0	2,0			nissible	
			25/30			_,-	_,.	1,02				
			30/37					1,04				
Increasing factors for co			35/45					1,07				
(only static or quasi-stat	tic actions)		10/50	1,07								
ψ_{c}			15/55					1,09				
			50/60					1,10				
Factor according to	Non-cracked concrete							10,1				
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	- k ₈	[-]	7,2								
Concrete cone failure	1											
				1								
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]					10,1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Installation safety factor	(dry and wet concrete)	$\gamma_2=\gamma_{inst}$		1,0				1	,2			
Installation safety factor	(flooded bore hole)	$\gamma_2 = \gamma_{inst}$				1,4				not adr	nissible	

Sormat Chemical Injection System ITH-Ve, ITH-Wi for concrete

Performances

Characteristic values of resistance for rebar under tension loads

Annex C 3

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}				
	$V^{0}_{Rk,s,seis}$	[kN]		ot ssible			0,:	0,35 ∙ A _s ∙ f _{uk}				
Ductility factor according to DEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8					
Steel failure with lever arm												
	М ⁰ _{Rk,s}	M ⁰ _{Rk,s} [Nm]				1.	2 ∙ W _{el} ∙	f _{uk}				
Characteristic bending moment	${\sf M}^0_{\sf Rk,s,seis}$	[Nm]			No Pe	erformar	nce Dete	rmined	(NPD)			
Concrete pry-out failure												
Factor k_3 in equation (27) of DEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Fechnical Report TR 029	k ₍₃₎						2,0					
nstallation safety factor	$\gamma_2 = \gamma_{inst}$						1,0					
Concrete edge failure												
Effective length of anchor	l _f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})				
Dutside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
nstallation safety factor	$\gamma_2 = \gamma_{inst}$						1,0					
Sormat Chemical Injection S Performances Characteristic values of resistance fo			for co	oncret	te				Anne	x C 4		

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25	;								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25		·							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]					0,0	70		
40°C/24°Cັ	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]					0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]					0,2	45		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]					0,2	45		
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	τ;	nt τ: action bond stress	s for tension							

Table C6: Displacements under shear load¹⁾ (threaded rod)

Anchor size the	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	d concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked cor	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]		-	0,17	0,15	0,14	0,13	0,12	0,10

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,120
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°Č	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]						0,070			
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	-					0,105			
Temperature range II:	[mm/(N/mm ²)]	1					0,170				
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		-				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]						0,170			
120°C/72°Č	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	1					0,245			
	τ; τ; isplacen	τ: action bond	hear lo	ad ¹⁾ (r	ebar)	~	~	~~~~	~~~~	~~~~	~ •
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C8: D Anchor size reinfo	τ; τ; isplacen prcing bar	τ: action bond				Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	τ; τ; prcing bar crete C20/;	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	ebar) Ø 12						
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-}\text{factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-}\text{factor} \end{split}$ Table C8: D Anchor size reinfor Non-cracked concomposition	τ; τ; brcing bar crete C20/2 δ _{v0} -factor	τ: action bond	hear lo Ø 8 0,06	oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05	0,04	0,04	0,04	0,03	0,03	0,03
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-}\text{factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-}\text{factor} \end{split}$ Table C8: D Anchor size reinfor Anchor size reinfor Non-cracked concordance All temperature ranges	τ; τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	ebar) Ø 12						0,03
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-}\text{factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-}\text{factor} \end{split}$ Table C8: D Anchor size reinfor Anchor size reinfor Non-cracked concordance All temperature ranges	τ; τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)]	hear lo Ø 8 0,06	oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: D Anchor size reinfor Non-cracked conc All temperature ranges Cracked concrete All temperature	τ; τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)]	hear lo Ø 8 0,06	oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05	0,04	0,04	0,04	0,03	0,03	Ø 32 0,03 0,04 0,06
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-}\text{factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-}\text{factor} \end{split}$ Table C8: D Anchor size reinfo Anchor size reinfo Non-cracked conc All temperature cracked concrete All temperature cracked concrete All temperature cracked concrete Cracked concrete all temperature concrete all temperature concrete concrete all temperature concrete concrete	τ; τ; isplacen prcing bar crete C20 /2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor C20/25 $δ_{V0}$ -factor $δ_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor $b_{V\infty}$ -factor	τ: action bond nent under s [mm/(kN)] [mm/(kN)] [mm/(kN)]	hear lo Ø 8 0,06 0,09	oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,03
$ δ_{N0} = δ_{N0}$ -factor $δ_{N\infty} = δ_{N\infty}$ -factor Table C8: D Anchor size reinfor Non-cracked conc All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th	τ; τ; isplacen orcing bar crete C20 /2 $δ_{Vo}$ -factor C20 /25 $δ_{Vo}$ -factor $δ_{V\infty}$ -factor e displacen V; V;	<pre>τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)] [mm/(kN)] nent V: action sheat</pre>	hear lo Ø 8 0,06 0,09	ad ¹⁾ (r Ø 10 0,05 0,08	ebar) Ø 12 0,05 0,08 0,11 0,17	0,04 0,06 0,11 0,16	0,04 0,06 0,10	0,04 0,05 0,09	0,03 0,05 0,08	0,03 0,04 0,07	0,03